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Abstract
Questions: Are self-organizing maps (SOMs) useful for patterning coastal wetland 
vegetation communities? Do SOMs provide robust alternatives to traditional classifi-
cation methods, particularly when underlying species response functions are un-
known or difficult to approximate, or when a need exists to continuously classify new 
samples obtained under ongoing long-term ecosystem monitoring programs as they 
become available?
Location: Coastal Louisiana, USA.
Methods: A SOM was trained from in-situ observations of 559 vegetation species 
relative cover data from 2,526 samples collected over 8 years at 343 locations across 
coastal Louisiana. Hierarchical cluster analysis was applied to the SOM output to 
delineate vegetation community types, and indicator species analysis was conducted. 
Salinity and flood duration were compared across the delineated community types.
Results: The SOM patterned the 2,526 training samples into 260 output neurons, 
which were further clustered into eleven community types. Clear gradients in salinity 
and flood duration existed among the community types, and geographic zonation of 
the communities was evident across the landscape. At some locations assemblages 
were temporally stable; at other locations, they varied considerably. Samples not 
used in training the network were effectively projected onto the SOM and assigned 
to one of the delineated community types.
Conclusions: The SOM was effective in delineating plant communities in the region 
that were qualitatively similar to those obtained in previous investigations. Being 
robust to skewed distributions and the presence of outliers, SOMs provide an alter-
native to traditional distribution-based statistical approaches. Their ability to effi-
ciently classify new data into existing community types makes their use an ideal 
approach to classifying samples obtained from ongoing, long-term ecological moni-
toring programs.
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1  | INTRODUC TION

Under existing climate change scenarios, coastal wetland ecosys-
tems are anticipated to experience profound impacts to coastal 
hydrology, which may drive shifts in marsh vegetation species com-
position (Callaway, Parker, Vasey, & Schile, 2007; Howard, Biagas, 
& Allain, 2016; Janousek & Folger, 2014; Snedden & Steyer, 2013). 
These impacts include altered salinity and inundation regimes as-
sociated with either sea-level rise (Bhuiyan & Dutta, 2012; Hilton, 
Najjar, Zhong, & Li, 2008) or changes in freshwater delivery brought 
about by altered precipitation regimes (Robins et al., 2016). The abil-
ity to objectively and efficiently classify coastal wetland vegetation 
communities can be essential to quantifying how zonation responds 
to changing environmental conditions, and is thus fundamental to 
successful coastal wetland ecosystem management and restoration 
in the face of climate change.

The wetlands in coastal Louisiana along the northern Gulf of 
Mexico account for roughly 40% of all the wetlands in the conti-
nental United States and have exhibited high rates of land loss over 
the last century, during which roughly 5,000 km2 of land has tran-
sitioned to open water (Couvillion, Beck, Schoolmaster, & Fischer, 
2017) largely due to a combination of submergence and diminished 
sediment supply (Penland et al., 2001). The region is now the sub-
ject of a globally unprecedented ecosystem restoration program es-
timated to cost $50–100 billion over the next 50 years (Peyronnin 
et al., 2017). Plant communities often reflect ecosystem processes 
and conditions at local and landscape scales more effectively than 
any other set of factors (Albert & Minc, 2004), and different com-
munities can influence processes such as hydrodynamics (Leonard 
& Luther, 1995), vertical accretion (Pasternack & Brush, 2001), and 
carbon burial (Wang, Xu, & Rongrong, 2016) in distinct ways. As 
such, substantial efforts to monitor the zonation of marsh vegeta-
tion communities in coastal Louisiana and how it may respond to 
restoration activities and continued disturbance such as sea-level 
rise and tropical storm impacts have been in place for over 20 years 
(Folse et al., 2014; Steyer, Raynie, Steller, Fuller, & Swenson, 1995) 
and are expected to continue (Hijuelos & Hemmerling, 2016).

Previous efforts to visualize gradients in vegetation commu-
nity composition in the region (Snedden & Steyer, 2013; Visser, 
Sasser, Chabreck, & Linscombe, 1998; Visser, Sasser, Linscombe, & 
Chabreck, 2000) have all relied on parametric, distribution-based 
multivariate statistical approaches. These approaches (two-way in-
dicator species analysis, canonical correspondence analysis), along 
with other commonly used eigen-based analytical approaches to 
ordination such as principal components analysis (PCA) and redun-
dancy analysis, all make assumptions regarding the shape of the 
species-abundance response along environmental gradients (e.g., 
linear vs. unimodal; Jongman, ter Braak, & van Tongeren, 1995), and 
the nature of these responses is often unknown or varies depending 
on the species in question. Additionally, these techniques perform 
best when species distributions are not strongly skewed (Legendre & 
Birks, 2012). Yet species-abundance datasets typically contain many 
zeros that arise from the occurrence of rare species or those with 

narrow realized environmental niches, and they may remain strongly 
skewed even after transformation by logarithmic or other functions 
(Lek et al., 1996; Brosse, Giraudel & Lek, 2001; Quinn & Keough, 
2002).

Over the last two decades, a multitude of artificial neural 
network (ANN) approaches have gained appeal as an alterna-
tive to classical statistical methods for analyses of multidimen-
sional data (Chon, 2011). Among ANNs, self-organizing maps 
(SOMs; Kohonen, 2001) have become increasingly popular for 
the analysis of large ecological datasets, including studies of di-
atoms (Tison et al., 2005), fish (Chen, Lek, Lek-Ang, & Zhongjie, 
2012; Park, Grenouillet, Esperance, & Lek, 2006a), benthic mac-
roinvertebrates (Bae, Chon, & Park, 2012; Lencioni, Marziali, & 
Rossaro, 2012; Li, Xiang, & Li, 2015), birds (Lee, Kwak, Lee, & 
Kim, 2007), forest vegetation (Adamczyk, Kurzak, Park, & Kruk, 
2013), and water quality (Chea, Grenouillet, & Lek, 2016). Unlike 
parametric statistical approaches, SOMs make no assumptions 
related to distributions of variables or correlations between 
those variables (Giraudel & Lek, 2001). Essentially, SOMs are 
methods for non-linear ordination analysis in that they provide a 
non-linear projection of the training dataset onto fewer (usually 
two) dimensions that approximates its probability density func-
tion (Kohonen, 2001). This two-dimensional projection consists 
of a network of cells, or neurons, each described by a vector 
that corresponds to a discrete region of the training dataset's 
multidimensional space. After a SOM is trained, traditional clus-
tering algorithms can be applied to the SOM results to delin-
eate discrete community types. At this point, new samples can 
be projected onto the clustered SOM to classify them into the 
existing community types without altering the existing cluster-
ing scheme. In this fashion, SOMs are a particularly attractive 
approach for classifying samples obtained from ongoing, long-
term ecological monitoring programs (Park, Chon, Kwak, & Lek, 
2004), and they allow for the verification of predictive model 
outcomes as data become available to do so. In this study, a SOM 
was trained with marsh vegetation species abundance data ob-
tained from a long-term regional coastal wetland monitoring 
program in Louisiana, USA, as an unsupervised machine-learning 
approach for classifying coastal wetland vegetation communi-
ties in the region.

2  | METHODS

2.1 | Study area and data collection

Vegetation cover data used in this study were obtained from 343 
sites selected from the Coastwide Reference Monitoring System 
(CRMS, www.lacoast.gov/crms; Figure 1—see Supporting informa-
tion Appendix S1 for a list of sites and years used for training), a 
statewide network of wetland monitoring stations distributed 
across coastal Louisiana that has been in place since 2006. Visual 
surveys of emergent marsh vegetation percent cover are con-
ducted at ten 2 m × 2 m permanent vegetation plots situated along 

http://www.lacoast.gov/crms
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a 280-m transect at each site annually (July–September; Folse et al., 
2014). Plant taxonomic nomenclature followed the USDA PLANTS 
Database (USDA, NRCS, 2019).

At each of the 343 sites, a logging instrument installed within 
150 m of the vegetation transects recorded salinity and water sur-
face elevation data at hourly intervals. For this study, it was assumed 
that salinity and water surface elevation did not vary over this dis-
tance and thus, values measured at each site were assumed to be 
identical to those in all vegetation plots at each site. Marsh surface 
elevation at each vegetation plot was surveyed in 2013 to the same 
vertical datum (North American Vertical Datum 1988) as the site's 
corresponding water level recorder. With these data, average annual 
salinity and percent time inundated were calculated for the time 
period October 2013–October 2014. Percent time inundated was 
calculated as the percent of time in which water surface elevation 
exceeded the marsh elevation of each vegetation plot.

2.2 | Modelling methods

Self-organizing maps are rooted in an unsupervised competitive 
learning process (Kohonen, 2001), and thus, they make no prior as-
sumptions regarding the distribution of the data, nor do they require 
predefined target classes (community types in this case). Rather, 
training of the network and the resulting classes is entirely data-
driven, whereby the network learns to classify by identifying pat-
terns among the samples in the training data set. The SOM consists 
of two layers—an input layer presented to the network as a matrix X 
with rows corresponding to samples n and columns corresponding 
to variables p, and an output layer (or map) formed by nodes (or map 
units) arranged in a two-dimensional grid. For this study, each input 
node is a measure of the abundance of each taxon, and the output 
layer is composed of M output nodes arranged in a hexagonal lattice. 
A hexagonal, as opposed to a square, lattice is typically used because 

it maximizes the number of neighbors for each node in the map. The 
number of map units along the vertical Mvert and horizontal Mhorz 
axes of the map are typically set such that their ratio approximates 
that of the first two PCA eigenvalues obtained from the training data 
and their product Mvert × Mhorz = M is approximately equal to 5

√

N 
(Vesanto & Alhoniemi, 2000), where N is the number of samples in 
the training set (n = 1, 2, …, N). A few other parameters of the train-
ing algorithm must be predetermined (e.g., training iterations, neigh-
borhood size, learning rate), but no further assumptions or decisions 
need to be made prior to training.

The relative cover values used to train the SOM were obtained 
from annual cover surveys conducted between 2006 and 2014 at 
the 343 selected sites (Figure 1) and calculated from species cover 
averaged across all plots within each site. This training data set 
consisted of 2,526 samples and 559 species, and the learning pro-
cess was conducted using the SOM Toolbox (Alhoniemi, Himberg, 
Parhankangas, & Vesanto, 2000; http://www.cis.hut.fi/projects/
somtoolbox/) in Matlab. Because SOMs make no distributional 
assumptions about the data (Kohonen, 2001), transformations 
are unnecessary and were not applied here. The training phase 
begins by first associating a weight vector wm composed of P el-
ements (p = 1, 2, …, P; m = 1, 2, …, M) where P is the number of 
variables (taxa) in the data set and M is the number of map units, 
to each map unit such that each map unit can be conceptualized 
as a virtual sample whose species’ relative abundances are indi-
cated by its weight vector (Figure 2). Here, initial values for each 
weight vector were assigned with the linear initialization algorithm 
(Kohonen, 2001), where PCA is first performed on the training data 
and the first two eigenvectors are interpolated in two dimensions 
across the map. Linear initialization ensures that, prior to training, 
the initial values of the weight vectors roughly approximate the 
probability density function of the training data, allowing for more 
rapid convergence during the training phase. The collection of the 

F IGURE  1 Location of 343 sites where vegetation cover, salinity, and water level were collected. Color indicates vegetation community 
type, as classified by the self-organizing map, based on taxa composition observed during the 2013 Coastwide Reference Monitoring System 
(CRMS) vegetation survey [Colour figure can be viewed at wileyonlinelibrary.com]

http://www.cis.hut.fi/projects/somtoolbox/
http://www.cis.hut.fi/projects/somtoolbox/
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pth element of all vectors in the map specifies the pth compo-
nent plane of the map, which represents the distribution of the 
pth species’ relative cover across the SOM. As the first step in the 
learning procedure, a sample xn is drawn from the training dataset 
and compared to each map unit. The weight vector from the map 
unit c with the lowest Euclidean distance from the training sample 
is designated the best matching unit (BMU). The elements in the 
BMU's vector are altered to become more similar to the training 
sample's vector xn, as are (to a lesser degree) those of neighboring 
map units according to the learning function:

Here hcm is a Gaussian neighborhood function, or smoothing 
kernel

where α is a learning rate factor and σ defines the width of the ker-
nel, both of which decrease with increasing number of learning cy-
cles t, and ‖rm − rc

2‖ is the distance on the map between the BMU 
and the mth map unit. This procedure is repeated for all training sam-
ples, and then the entire learning process is repeated several times 
until the results converge.

The importance of each taxon in structuring the SOM was as-
sessed with the global structuring index (GSI; Park, Gevrey, Lek, & 
Giraudel, 2005), computed as

where ‖rj − rm‖ is the distance on the map between the map units 
j and m. Thus, high GSI values indicate strong gradients in a given 
taxon's relative abundance across the map. Many taxa in species-
abundance datasets are rare, and as such, they often add noise 
and provide little information to community analysis (Gauch, 1982; 
McCune & Grace, 2002). However, simply being rare does not nec-
essarily preclude their informative value to ordination. Here the 
importance of taxa to ordination was assessed with GSI scores and 
used as the basis for inclusion in the SOM. First, GSI scores were cal-
culated for a SOM trained with all taxa present in the training data-
set, and values of all GSI scores were summed. This process was then 
repeated with fewer species, each time discarding the species with 
the lowest GSI score until only ten species remained in the model. 
Subsequently the differences of the summed GSI values between 
the original dataset (full model with all taxa) and reduced datasets 
were calculated, and a reduced SOM that struck a balance between 
minimizing this difference and reducing dimensionality (as indicated 
by the presence of a local minimum in a plot of number of species vs 
summed GSI scores of full and reduced species models) was selected 
(see Park et al., 2006b).

By identifying BMUs for each training sample, SOMs initially 
classify them into one of M groups projected onto discrete regions 
(map units) of a two-dimensional plane. Where M is large, additional 
compression into a smaller number of classes (q = 1, …, Q) is often 
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F IGURE  2 Schematic diagram of the 
structure of the self-organizing map, 
modified from Chon, Park, Moon, and Cha 
(1996)
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desired. Here, a hierarchical cluster analysis was applied to the 
weight vectors of the SOM map units with Ward's linkage based 
on Euclidean distance. Rather than impose prior assumptions to 
the number of clusters obtained in the analysis, the samples were 
classified by varying the number of clusters from 2 to 20, and the 
classification scheme that produced the greatest mean silhouette 
statistic (Kaufman & Rousseeuw, 1990) was selected. At this point, 
dendrogram branches containing no significant indicator species 
(obtained from indicator species analysis; see below) were com-
bined with neighboring branches into single groups (Abraão et al., 
2010; Salovaara, Cárdenas, & Tuomisto, 2004). Between-cluster 
differences in environmental variables were evaluated with the 
Kruskal–Wallis test (non-parametric analysis of variance) followed 
by a post-hoc Tukey test for multiple comparisons (Zar, 1984).

Characteristic taxa for each community type were identified 
with indicator species analysis (Dufrêne & Legendre, 1997), where 
indicator values (IV) are calculated as

where RAqp is the relative abundance of species p in class q, com-
puted as the mean relative cover of species p in class q, divided by 
the sum of mean relative cover values of species p across all classes. 
RFqp is the relative frequency of species p in class q, defined as the 
proportion of samples in the qth class that contain species p. Thus, 
RAqp is a measure of species specificity to a particular class, whereas 
RFqp is a measure of fidelity. The maximum IV of 100 occurs when in-
dividuals of species p only occur in samples assigned to group q, and 
all samples classified as q contain species p. After computing IVs, a 
Monte Carlo significance test of observed maximum indicator values 
for a given species was applied with 999 permutations.

Samples collected under separate research or monitoring pro-
grams with compatible methods that were not used in model train-
ing were then projected onto the trained SOM for classification. For 
this exercise, high-density, lower-frequency helicopter-based vege-
tation surveys conducted at ~4,000 sites across coastal Louisiana 
every 5–10 years (see Chabreck, Linscombe, Hartley, Johnston, & 
Martucci, 2001; Linscombe & Hartley, 2011; Sasser, Visser, Mouton, 
Linscombe, & Hartley, 2008, 2014) were projected onto the SOM to 
facilitate delineation of the geographic zonation of the eleven com-
munity types at a landscape scale.

3  | RESULTS

A reduced SOM model trained with the 49 most important taxa 
(i.e., highest GSI scores; Table 1) was selected and used for all fur-
ther analysis (see Supporting information Appendix S2). The SOM 
contained 260 map units arranged across a 20 × 13 grid, and BMUs 
for the 2,526 training samples were distributed broadly across the 
SOM (all but 12 map units were BMUs for at least one of the training 
samples; Figure 3). The dendrogram obtained from hierarchical clus-
ter analysis was cut at 15 groups to maximize the mean silhouette 
width (0.37), after which branches containing no significant indicator 

IVqp=RAqp×RFqp

TABLE  1 The 49 taxa retained to train the reduced self-
organizing map, along with their abbreviations and global 
structuring indices (GSIs)

Taxa Abbreviation GSI

Spartina patens SPPA 1,093

Spartina alterniflora SPAL 1,002

Distichlis spicata DISP 572

Phragmites australis PHAU 463

Juncus roemerianus JURO 246

Bolboschoenus robustus BORO 218

Sagittaria lancifolia SALA 209

Schoenoplectus americanus SCAM 179

Panicum hemitomon PAHE 159

Paspalum vaginatum PAVA 158

Polygonum punctatum POPU 136

Alternanthera philoxeroides ALPH 107

Schoenoplectus californicus SCCA 99

Ipomoea sagittata IPSA 82

Typha spp. TYPHA 78

Eleocharis spp. ELEOC 77

Leersia hexandria LEHE 77

Typha latifolia TYLA 77

Lythrum lineare LYLI 68

Spartina cynosuroides SPCY 67

Echinochloa walteri ECWA 64

Iva frutescens IVFR 58

Sacciolepsis striata SAST 52

Typha domingensis TYDO 51

Avicennia germinans AVGE 50

Cladium mariscus CLMA 49

Zizaniopsis miliacea ZIMI 48

Ludwigia grandiflora LUGR 48

Colocasia esculenta COES 43

Thelypteris palustris THPA 41

Hydrocotyle umbellata HYUM 37

Amaranthus australis AMAU 36

Eleocharis macrostachya ELMA 34

Bacopa monnieri BAMO 33

Baccharis halimifolia BAHA 32

Sagittaria latifolia SALA2 31

Batis maritima BAMA 31

Cicuta maculate CIMA 30

Cyperus odoratus CYOD 29

Symphyotrichum tenuifolium SYTE 28

Eleocharis cellulosa ELCE 28

Paspalum distichum PADI6 27

Panicum dichotomiflorum PADI 25

(Continues)
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species were combined with neighboring branches into single groups 
to ultimately delineate eleven distinct community types (Figure 3) 
with a mean silhouette width of 0.42. The twelve map units that 
were not identified as BMUs for any of the training samples all fell 
along community type boundaries in the SOM, essentially corrobo-
rating results of the cluster analysis.

The component planes (Figure 4; Supporting information 
Appendix S3) depict the distribution of each component (vegetation 
taxa) in each SOM map unit and visually convey information regard-
ing the specificity and fidelity of each species in the SOM to each 
of the delineated community types. Most of the taxa with high GSI 
scores (those most important in structuring the SOM) were clearly 
associated with single clusters. For example, Spartina patens was 
most prevalent in map units encompassed in the wiregrass cluster 
(Figure 3), even though it was present in smaller abundances in map 
units belonging to several other clusters. Other species, such as 
Ipomoea sagittata, span a wide region of the SOM and are thus pres-
ent in a variety of community types, albeit possibly in small abun-
dances. The component planes also confer qualitative indications 
regarding correlations among species. For example, some species 
tend to co-occur (e.g., Sagittaria lancifolia and Alternanthera philox-
eroides) whereas others are rarely found together (e.g., Spartina 

alterniflora and Phragmites australis). Some community types are 
dominated by different species, depending on which region of the 
SOM cluster a sample projects onto. For example, the upper re-
gion of the bulltongue cluster is dominated by Sagittaria lancifolia, 
whereas the lower region is dominated by Polygonum punctatum 
(with Sagittaria lancifolia present in smaller abundance).

3.1 | Dominant/indicator species and geographic 
trends of vegetation communities

The majority of the eleven community types delineated was 
characterized by multiple indicator species; however, five communi-
ties, wiregrass, needlerush, brackish mix, oystergrass, and saltgrass, 
had only one indicator species (Table 2). The species with the highest 
percent relative cover was an indicator species in all communities 
with the exception of the brackish mix community (Table 3). For the 
following community descriptions, geographic zonation is shown in 
Figure 1, and commonly occurring species were determined from 
relative frequency values in Table 2.

Maidencane communities are dominated by Panicum hemitomon 
(IV 86.4) and typically found in the inland extremities of the inter-
distributary basins of the Mississippi River delta plain, often near 
bulltongue sites (see below). Other species common to this commu-
nity type include Leersia hexandria, Thelypteris palustris, Alternanthera 
philoxeroides, Polygonum punctatum, and Sagittaria lancifolia.

Three-square communities are dominated by Schoenoplectus 
americanus (IV 55.6) with Spartina patens occurring in these com-
munities 91% of the time. Three-square sites are often located just 
inland from wiregrass communities. Other common species for this 
community include Sagittaria lancifolia and Lythrum lineare.

Roseau cane communities are dominated by Phragmites aus-
tralis (IV 85), and often co-occur with Spartina patens, Alternanthera 

Taxa Abbreviation GSI

Sagittaria platyphylla SAPL 23

Leptochloa fusca LEFU 20

Morella cerifera MOCE 20

Bidens laevis BILA 18

Schoenoplectus deltarum SCDE 10

Nelumbo lutea NELU 9

TABLE  1  (Continued)

F IGURE  3  (left) Classification of the 
training samples according to the self-
organizing map (SOM). The size of the 
black inset hexagon in each SOM unit is 
proportional to the number of samples 
assigned to that unit. The largest inset 
hexagon (upper right corner) represents 
128 samples. Based on hierarchical cluster 
analysis with Ward's linkage performed 
on SOM output (right), SOM units were 
classified into 11 clusters (vegetation 
community types) [Colour figure can be 
viewed at wileyonlinelibrary.com]
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philoxeroides, and Polygonum punctatum. Roseau cane communities are 
most prevalent in the marshes at the mouth of the Mississippi River.

Paspalum communities are dominated by Paspalum vaginatum 
(IV 52.4). Other species common to Paspalum communities include 
Schoenoplectus californicus, Spartina patens, Typha latifolia, Ipomoea 
sagittata, Distichlis spicata, and Echinochloa walteri. Paspalum sites 
are most prevalently located near large inland lakes along the west-
ern reaches of coastal Louisiana (Figure 1).

Wiregrass communities are dominated by Spartina patens (IV 
39.0). Other common species for this community type include 
Schoenoplectus americanus, Lythrum lineare, Ipomoea sagittata, 
Bolboschoenus robustus, and Distichlis spicata. Wiregrass is perhaps 
the most widespread of all marsh community types across coastal 

Louisiana. The relatively low IV for Spartina patens in wiregrass 
communities is a reflection of the low RA of this species, resulting 
from the fact that it is present at all of the eleven community types. 
However, the species was present at all sites classified as wiregrass.

Bulltongue communities are dominated by Sagittaria lancifolia 
(IV 32.4), and often contain Polygonum punctatum, Ipomoea sagittata, 
and Alternanthera philoxeroides. These sites are most prevalent along 
the inland reaches of the coastal zone, often intermixed with maid-
encane communities.

Needlerush communities are dominated by Juncus roemerianus 
(IV 70.1) and are generally co-dominated by varying combinations 
of Distichlis spicata, Spartina alterniflora, Bolboschoenus robustus, and 
Spartina patens. Needlerush sites are most prevalent toward the 

F IGURE  4 Component planes for the 25 taxa most important in structuring the self-organizing map (SOM). Each plane depicts the 
distribution of relative abundances for each particular taxon across the SOM. White lines delineate vegetation community types as depicted 
in Figure 3. Global structuring index (GSI) values are shown in the upper right-hand corner. Component planes for the remaining 24 taxa are 
presented in Appendix S3 [Colour figure can be viewed at wileyonlinelibrary.com]
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seaward extremities of the Mississippi River delta plain, often inter-
mixed with brackish mix and oystergrass communities.

Bulrush communities are dominated by Bolboschoenus robustus 
(IV 49.9), often co-dominant with Distichlis spicata, Spartina patens, 
and Spartina alterniflora. Bulrush sites are mostly concentrated at the 
seaward reaches of southwest Louisiana (Figure 1).

Brackish mix communities are typically situated just inland from 
oystergrass communities (see below) along the seaward end of the 
Mississippi River delta plain (Figure 1), and are dominated by Spartina 
alterniflora (Tables 2, 3). Common co-occurring species of brackish 
mix communities include Spartina patens, Juncus roemerianus, and 
Distichlis spicata. Because the common co-occurring species in this 
community also strongly co-occur in other community types, brack-
ish mix communities do not have a strong indicator species. The sole 
indicator species, Avicennia germinans (IV 7.7) was only present in 
eight percent of brackish mix sites, even though 96% of the occur-
rences of this species are found at sites classified as brackish mix 
communities (Table 2).

Oystergrass communities are dominated by Spartina alterniflora 
(IV 49.2; Tables 2, 3), and often co-occur with small coverages of 
Juncus roemerianus. Oystergrass sites are typically located at the 
seaward ends of the interdistributary basins of the Mississippi River 
delta plain (Figure 1).

Saltgrass communities are dominated by Distichlis spicata (IV 
50.8), and typically are co-dominated by Spartina patens, Spartina 
alterniflora, and Bolboschoenus robustus. Saltgrass sites are sporadi-
cally intermixed with brackish mix and wiregrass communities.

3.2 | Variation in hydrologic variables

Salinity differed among the community types (χ2 = 1494.32; df = 10; 
p < 0.001) and was highest for oystergrass communities and lowest 
for maidencane and bulltongue communities, which did not differ 
from each other (Figure 5). Wiregrass, bulrush, saltgrass, needlerush 
and brackish mix communities showed considerable overlap with 
respect to salinity, though wiregrass and brackish mix communities 

TABLE  3 Mean % relative cover of the seven most abundant taxa for each community type

Maidencane Three-square Roseau Cane Paspalum

Panicum hemitomon 34 Schoenoplectus americanus 27 Phragmites australis 71 Paspalum vaginatum 24

Leersia hexandria 11 Spartina patens 19 Spartina patens 5 Schoenoplectus 
californicus

13

Sagittaria lancifolia 10 Sagittaria lancifolia 6 Alternanthera 
philoxeroides

4 Spartina patens 11

Eleocharis 7 Lythrum lineare 5 Spartina alterniflora 3 Typha latifolia 10

Thelypteris palustris 5 Cladium mariscus 4 Typha domingensis 2 Ipomoea sagittata 6

Alternanthera 
philoxeroides

4 Eleocharis macrostachya 4 Zizaniopsis miliacea 2 Distichlis spicata 3

Typha 4 Distichlis spicata 4 Polygonum punctatum 2 Echinochloa walteri 3

Wiregrass Bulltongue Needlerush Bulrush

Spartina patens 65 Sagittaria lancifolia 16 Juncus roemerianus 54 Bolboschoenus robustus 24

Distichlis spicata 7 Polygonum punctatum 11 Spartina alterniflora 15 Distichlis spicata 16

Schoenoplectus 
americanus

5 Alternanthera philoxeroides 7 Spartina patens 8 Spartina patens 13

Bolboschoenus robustus 3 Ludwigia grandiflora 4 Distichlis spicata 8 Spartina cynosuroides 8

Ipomoea sagittata 2 Typha 4 Lythrum lineare 2 Spartina alterniflora 7

Lythrum lineare 2 Colocasia esculenta 3 Phragmites australis 2 Paspalum distichum 5

Spartina alterniflora 2 Sacciolepsis striata 3 Bolboschoenus robustus 2 Juncus roemerianus 5

Brackish Mix Oystergrass Saltgrass

Spartina alterniflora 53 Spartina alterniflora 93 Distichlis spicata 49

Spartina patens 20 Juncus roemerianus 4 Spartina patens 21

Juncus roemerianus 10 Spartina patens 1 Spartina alterniflora 15

Distichlis spicata 7 Distichlis spicata 1 Bolboschoenus robustus 6

Bolboschoenus robustus 3 Batis maritima <1 Schoenoplectus 
americanus

2

Avicennia germinans 3 Bolboschoenus robustus <1 Iva frutescens 1

Iva frutescens 2 Avicennia germinans <1 Juncus roemerianus 1

Note. Bold indicates species was a significant indicator for the group in question.
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showed clear separation from each other. Though percent time 
inundated varied among community types (χ2 = 117.43; df = 10; 
p < 0.001), there was considerable overlap among the community 

types, with inundation time lowest in needlerush communities and 
highest in paspalum. All other community types grouped together 
with respect to inundation.

F IGURE  5  (lower) Boxplots indicating average annual salinity (a) and percent time flooded (b) for the 11 vegetation community types 
identified by clustering the self-organizing map (SOM). Community types are ordered from left to right by increasing rank sums. In each 
boxplot, thick horizontal line indicates median, box indicates interquartile range, and whiskers indicate maximum and minimum values. 
(upper) Community types sharing the same line did not differ statistically (α = 0.05) as determined by Tukey multiple comparisons

F IGURE  6 Examples of self-organizing map (SOM) temporal trajectories depicting annual variation in vegetation communities for 
CRMS3565 (a), CRMS0400 (b) and CRMS0225 (c). Samples obtained in 2015 and 2016 were not used in training the SOM but were 
projected onto the SOM after training, illustrating the ability of the trained SOM to classify new samples as they become available
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3.3 | Classifying new samples

Site data from 2015 and 2016, which were not used in the learning 
process, were classified as one of the established community types 
by projecting species vectors onto the SOM to determine BMUs. 
The BMU is determined simply by selecting the SOM map unit m 
for which the Euclidean distance between the weight vector wm 
and the new sample in question is minimized. Figure 6 shows an 
example of assessing time-variation in community structure from 
three CRMS sites (CRMS3565, CRMS0400, CRMS0225; www.la-
coast.gov/crms), from 2006 through 2016. Throughout this time 
period, CRMS3565 occupies the same cluster (wiregrass) and 
projects onto map units in a very limited region of the SOM, in-
dicating a temporally stable community composition (Figure 6a). 
In contrast, CRMS0400 shows pronounced interannual shifts in 
community composition, spanning a wide range of community 
types (Figure 6b). CRMS0225 begins as a wiregrass community in 
2006 and remains so through 2009, after which it transitions to a 
three-square community and remains so through 2016 (Figure 6c). 
The SOM enables visualization of these temporal trends and, in 
the case of CRMS0225 during 2008–2009, provides an indication 
that a community shift may be under way even though the species 
composition has not yet crossed the discrete boundary to a new 
community type. The SOM was also effective at classifying sam-
ples collected during the 2013 helicopter-based survey (Figure 7). 
Geographic zonation of the plant communities based on the heli-
copter survey is, qualitatively speaking, very similar to that ob-
tained from the ground-based survey conducted in 2013 (Figure 1).

4  | DISCUSSION

Coastal emergent marsh vegetation assemblages of the northern Gulf 
of Mexico were patterned with a SOM according to distributional 

similarities of species relative cover data from over 2,500 samples 
collected at nearly 350 sites spanning 8 years. Hierarchical cluster 
analysis, in conjunction with the silhouette statistic and indicator 
species analysis, delineated the SOM output into eleven distinct 
vegetation community types that, broadly speaking, resembled 
those put forth from previous efforts to delineate community types 
with conventional statistical approaches (Snedden & Steyer, 2013; 
Visser et al., 1998, 2000).

Salinity was clearly the most important hydrologic factor associ-
ated with the spatio-temporal variation of vegetation assemblages. 
The pronounced influence of salinity is manifest by the relatively 
small salinity interquartile ranges for each community type and the 
greater degree of separation in the Kruskal–Wallis multiple compar-
ison groupings (Figure 5). The influence of salinity is also evident in 
the geographic zonation of the community types, whereby more 
salt-tolerant community types (e.g., oystergrass, brackish mix, salt-
grass) are situated at the seaward end of estuarine basins far from 
mouths of major rivers; fresher community types (e.g., maidencane, 
bulltongue, roseau cane) tend to be located either further inland or 
in regions near strong fluvial influence (Figure 1). The overarching 
importance of salinity in structuring vegetation communities ob-
served in this study is in agreement with numerous existing studies 
(Adams, 1963; Cooper, 1982; Ewing, 1983; Latham, Pearlstine, & 
Kitchens, 1994; Odum, 1988; Phleger, 1971). Qualitatively, the dis-
tribution of the eleven community types across the estuarine salinity 
gradient in the present study reflects findings of Snedden and Steyer 
(2013), though direct comparisons are challenging given the dispar-
ity in clustering approaches between the two studies.

The manner in which vegetation communities associated with 
inundation was less clear. Median percent time inundated for paspa-
lum communities exceeded 80%, and was significantly greater 
than that of all other community types. Cantero, Cisneros, Zobel, 
and Cantero (1998) observed paspalum stands to be located in re-
gions with high flood frequencies with durations exceeding 45 days. 

F IGURE  7 Self-organizing map classification of species cover data from 2013 helicopter-based vegetation surveys conducted at 4,215 
locations across coastal Louisiana (Sasser et al., 2014) [Colour figure can be viewed at wileyonlinelibrary.com]

http://www.lacoast.gov/crms
http://www.lacoast.gov/crms
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Among the more saline community types in this study, there was 
a change in species composition from needlerush to brackish mix 
to oystergrass communities along a gradient of increased inunda-
tion, consistent with several previous investigations of vegetation 
zonation along elevation gradients in salt marshes (Eleuterius & 
Eleuterius, 1979; Latham et al., 1994; Niering & Warren, 1980; 
Pennings, Grant, & Bertness, 2005). Despite these subtle patterns of 
community zonation with respect to inundation, each of the eleven 
community types delineated in this study was, broadly speaking, 
present across a wide range of inundation regimes, as shown by the 
large interquartile ranges (Figure 5). Yet previous investigations have 
clearly shown the importance of inundation to primary production 
in emergent marsh macrophytes, particularly belowground, where 
increased inundation leads to diminished production for a variety 
of species that were dominants for the community types identified 
in this study, including Spartina alterniflora (oystergrass and brackish 
mix communities; Voss, Christian, & Morris, 2013; Snedden, Cretini, 
& Patton, 2015), Juncus roemerianus (needlerush communities; Voss 
et al., 2013), Spartina patens (wiregrass communities; Kirwan & 
Guntenspergen, 2015; Snedden et al., 2015), Schoenoplectus amer-
icanus (three-square communities; Schile, Callaway, Suding, & Kelly, 
2017), and Sagittaria lancifolia (bulltongue communities; Visser & 
Sandy, 2009; Visser & Peterson, 2015). If decreased production is an 
ubiquitous response to increased inundation among the dominant 
species of several community types, decreased total biomass, rather 
than strong shifts in species composition, may be the primary im-
pact of increased flooding. Thus, many assemblages observed here 
may often persist at low elevations corresponding to sub-optimal 
production, possibly due to the occurrence of competitive interac-
tions at higher, less stressful elevations (Bertness, 1991a,b; Pennings 
et al., 2005).

The two-step classification procedure described here, whereby 
traditional cluster analysis is applied to SOM output is, in multiple 
ways, a robust alternative to classical parametric statistical ap-
proaches for examining gradients in vegetation species composition. 
The efficacy of this two-step approach can be compared to results 
obtained with hierarchical agglomerative clustering applied directly 
to the Bray–Curtis similarity matrix of the full (559 taxa) dataset by 
comparing mean silhouette widths between the two approaches. 
The mean silhouette width for the eleven-class SOM-based ap-
proach with the 49 selected taxa was 0.42, compared with 0.35 for 
the direct clustering approach on the full (559 taxa) species com-
position matrix with seven groups (seven groups produced a local 
maximum in mean silhouette width for this approach), and 0.29 
when the dendrogram is cut at eleven groups (Supporting informa-
tion Appendix S4), indicating comparable, possibly even slightly in-
creased performance, for the SOM-based approach.

Species abundance datasets typically contain many rare taxa 
that are absent in the vast majority of samples. These absences, rep-
resented by zeros, can make their distributions strongly skewed and 
difficult to correct for with any transformation (98% of the values of 
the original training dataset in this study were zeros). One common 
approach to mitigating this problem has been to eliminate taxa that 

are not present in some arbitrary minimum of percentage samples 
(e.g., 5%; Gauch, 1982). In addition to its arbitrary nature, this ap-
proach can be problematic in that common taxa occurring at nearly 
all sites may be selected for inclusion in the analysis (even though 
they minimally inform the ordination) whereas others that are abun-
dant at relatively few sites may be excluded (even if they are strong 
indicators of a particular community type; Poos & Jackson, 2012). 
The method presented here is not hindered by these issues because 
the GSI, the basis for selecting taxa for inclusion in the reduced 
model, indicates species contribution to the overall organization of 
the SOM, by quantifying the gradient in species abundance across 
a given topological distance in the SOM. Had the 5% rule of thumb 
been used as the criterion for taxa selection in the present analysis, 
20% of the taxa that were ultimately retained in the reduced model 
would have been excluded.

Another consequence of the multitude of rare taxa in ecolog-
ical datasets is that they typically contain a great number of out-
liers, which present significant challenges to traditional clustering 
techniques (Johnson & Wichern, 1992). The problem of outliers is 
mitigated with SOMs because during the learning phase, map units 
topologically near each other (defined by the neighborhood function 
in Equation 3) activate each other to learn from the same training 
vector. This process has a smoothing effect on the neurons’ weight 
vectors, and thus removes noise (Kohonen, 2001). Additionally, each 
outlier impacts only its BMU and neurons in its neighborhood, leav-
ing other regions of the map are unaffected.

Incumbent upon nearly all ecosystem restoration and manage-
ment programs is the need for predicting and monitoring ecosys-
tem responses to natural variability, disturbance, and anthropogenic 
impacts, often as they relate to changes in species composition. In 
coastal wetlands of Louisiana, increased inundation is expected to ac-
company increased freshwater inflows (Snedden, Cable, & Wiseman, 
2007) brought about by Mississippi River diversions designed to re-
introduce sediments to the rapidly subsiding delta plain (Peyronnin 
et al., 2017). Excessive inundation has been shown to impede below-
ground marsh production of community dominants in regions where 
river diversions are being planned (Snedden et al., 2015), which can 
diminish organic soil accumulation, the primary contributor to marsh 
vertical accretion in the inactive regions of the Mississippi River 
delta plain (Cahoon, White, & Lynch, 2011; DeLaune, Kongchum, 
White, & Jugsujinda, 2013; DeLaune, Whitcomb, Patrick, Pardue, & 
Pezeski, 1989; Nyman, DeLaune, Roberts, & Patrick, 1993; Turner, 
Swenson, & Milan, 2002). As such, the success of these projects may 
largely hinge upon the ability of existing marsh vegetation commu-
nities to self-organize around conditions of increased inundation 
(Peyronnin et al., 2017) and thus there exists a need to continuously 
classify new samples of species composition data into these commu-
nity types as new data become available. Traditional unsupervised 
clustering techniques are unstable to the addition of new data, as 
shifts in cluster membership of previously classified sites may occur 
when new samples are added to previously classified datasets. This 
instability is problematic in that each new classification exercise 
yields a new classification system that may not be comparable with 
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those previously obtained (Černá & Chytrý, 2005). With SOMs, new 
data can simply be projected onto the existing, trained network, 
allowing for objective, effective and efficient classification as they 
become available. Thus, differences between expected or predicted 
outcomes and actual observations can be readily detected, making 
SOMs an ideal tool for monitoring and adaptive management.

Though several aspects of SOMs make them an attractive tech-
nique for ordination and classification of floral and faunal assem-
blages it is important to bear in mind that, while offering an approach 
that is largely free of assumptions, SOMs still carry a large subjec-
tive component that requires analyst input (e.g., specifying network 
size, learning rates, clustering method, size of training dataset). 
Additionally, SOMs provide no significance level for the gradients 
they identify, and (unlike eigen-based techniques) they do not par-
tition the variance explained by these gradients. Though SOMs are 
robust to issues such as skewness, outliers, rare taxa, and classifying 
new samples without altering the existing partition, these issues can 
also be addressed with other approaches such as data transforma-
tion, noise clustering (DeCáceres, Font, & Oliva, 2010), downweight-
ing of rare species, fuzzy classification frameworks (DeCáceres et al., 
2010), and supervised classification approaches (Černá & Chytrý, 
2005; van Tongeren, Gremmen, & Hennekens, 2008). And like all 
unsupervised classification methods, SOMs only perform well on 
samples containing combinations of taxa that are similar to those 
presented to it during the learning phase. Thus, it is important to en-
sure that the set of training samples are representative of the set of 
new samples the analyst expects to classify. However, one key distin-
guishing feature of SOMs is their capacity to facilitate visualization 
of taxa on the SOM in a way that provides semi-quantitative infor-
mation regarding their abundance in the space of their sampling lo-
cations through examination of component planes (Astel, Tsakovski, 
Barbieri, & Simeonov, 2007). In this fashion, SOMs offer an avenue 
for combining R-mode and Q-mode clustering (Li et al., 2015).

Future efforts should expand the utility of this assemblage classi-
fication approach by linking the community types delineated here to 
environmental variables with predictive models based on either sta-
tistical (e.g., multinomial logistic regression; see Snedden & Steyer, 
2013) or neural network (e.g., multilayer perceptron; see Park et al., 
2006a) predictive models. Additionally, sites classified with this ap-
proach into community types based on their in-situ species compo-
sition data can subsequently serve as training data for supervised 
classification of remotely sensed multispectral imagery to provide 
high-resolution (10 m) spatial data of marsh vegetation community 
zonation across coastal landscapes.
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